Robust Player Gesture Spotting and Recognition in Low-Resolution Sports Video
نویسندگان
چکیده
The determination of the player’s gestures and actions in sports video is a key task in automating the analysis of the video material at a high level. In many sports views, the camera covers a large part of the sports arena, so that the resolution of player’s region is low. This makes the determination of the player’s gestures and actions a challenging task, especially if there is large camera motion. To overcome these problems, we propose a method based on curvature scale space templates of the player’s silhouette. The use of curvature scale space makes the method robust to noise and our method is robust to significant shape corruption of a part of player’s silhouette. We also propose a new recognition method which is robust to noisy sequences of data and needs only a small amount of training data.
منابع مشابه
Gesture spotting for low-resolution sports video annotation
Human gesture recognition plays an important role in automating the analysis of video material at a high level. Especially in sports videos, the determination of the player’s gestures is a key task. In many sports views, the camera covers a large part of the sports arena, resulting in low resolution of the player’s region. Moreover, the camera is not static, but moves dynamically around its opt...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملAutomatic Labeling of Sports Video Using Umpire Gesture Recognition
We present results on an extension to our approach for automatic sports video annotation. Sports video is augmented with accelerometer data from wrist bands worn by umpires in the game. We solve the problem of automatic segmentation and robust gesture classification using a hierarchical hidden Markov model in conjunction with a filler model. The hierarchical model allows us to consider gestures...
متن کاملResearch on Action Recognition of Player in Broadcast Sports Video
Based on support vector machine (SVM) and analysis of optical flow, the paper presents a new method for recognizing player motions in broadcast sports video. The video often has problems like bad-quality image, non-static video cameras and low-resolution image of player. To address them, from the perspective of movement analysis and according to the spatial distribution features of optical flow...
متن کاملA Real-Time Approach to the Spotting, Representation, and Recognition of Hand Gestures for Human-Computer Interaction
Aiming at the use of hand gestures for human–computer interaction, this paper presents a real-time approach to the spotting, representation, and recognition of hand gestures from a video stream. The approach exploits multiple cues including skin color, hand motion, and shape. Skin color analysis and coarse image motion detection are joined to perform reliable hand gesture spotting. At a higher ...
متن کامل